
NASA Technical Memorandum 110174

Solution of the Three-Dimensional
Helmholtz Equation with
Nonlocal Boundary Conditions

Steve L. Hodge
Virginia Consortium for Engineering and Science, Hampton, Virginia

William E. Zorumski and Willie R. Watson
Langley Research Center, Hampton, Virginia

May 1995

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-0001



Abstract

The Helmholtz equation is solved within a three-dimensional rectangular duct with a
sound source at the duct entrance plane, local admittance conditions on the side walls,
and a new, nonlocal radiation boundary condition at the duct exit plane. The formulation
employs a truncation of an in�nite matrix, the generalized modal admittance tensor, that
represents the transformation of the modal pressure coe�cients to the modal axial velocity
coe�cients. This condition accurately models the acoustic admittance (a relationship be-
tween the velocity and pressure of an acoustic wave) at an arbitrary computational boundary
plane. In particular, the proper physical admittance may correspond to a nonre
ecting radi-
ation condition on an arbitrarily located boundary plane that is used to limit the size of the
computational domain. A linear system of equations is constructed with second-order central
di�erences for the Helmholtz operator and second-order backward di�erences for both local
admittance conditions and the gradient term in the nonlocal radiation boundary condition.
The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure
of the matrix makes direct solution techniques impractical; as a result, a nonstationary it-
erative technique is used for its solution. The theory behind the nonstationary technique
is reviewed, and numerical results are presented for radiation from both a point source and
a planar acoustic source in both soft-walled and hard-walled ducts. The solutions with the
nonlocal boundary conditions are invariant to the location of the computational boundary,
and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus
provide a means of minimizing the size of three-dimensional computational domains.



1 Introduction

Computational aeroacoustics requires the resolution of relative short waves in large com-
putational volumes. In the case of aircraft engines, for example, the frequencies of interest
may require a grid spacing of roughly one centimeter and a corresponding computational cell
volume of one cubic centimeter. Since modern engines have volumes of several cubic meters,
a computational aeroacoustic simulation must involve millions of equations.

Acoustics problems are often posed in an in�nite domain, but a computational domain
must be �nite. The computational domain is made �nite by the introduction of a computa-
tional boundary condition on it's arbitrarily-located surface within the in�nite domain. Most
computational boundary conditions for these surfaces are local di�erential operators which
presume some knowledge of the wave �eld in the neighborhood of the boundary surface, [1],
[2].

If the surface is far from the sources of sound, this is a good approximation because
theoretical acoustics gives a good estimate of the direction of wave propagation. But moving
the bounding surface away from the sources makes the computional problem large. Reducing
the size of the computational problem by moving the boundary surface close to the sources
introduces errors because the complex wave �elds near the source are incompatible with the
assumptions used in the construction of the boundary conditions.

We are developing computational aeroacoustic boundary conditions which are valid for
all wave �elds, irrespective of their complexity. These boundary conditions may be applied
close to the acoustic sources, so that the size of the computational volumes may be kept
to a minimum. These conditions represent the superposition of all possible linear �elds in
the domain exterior to the computational volume. Since linearity is the only assumption
about the exterior �eld, the computational volume may be reduced to the limit of this
linear assumption. These boundary conditions are naturally more complicated because they
contain more information. They are implemented as matrix or tensor operators and are called
nonlocal boundary conditions because they represent the in
uence of a wave propagation
between separate points on the boudary surface.

The �rst formulation and demonstration of these nonlocal boundary conditions was given
in reference [3] for the case of wave propagation in a two-dimensional duct. There, it was
shown that the computational space could be reduced by a factor of ten with no e�ect on
the solution. A comparison of the nonlocal boundary condition with some local boundary
conditions in reference [4] showed that the nonlocal conditions were accurate for all source
�elds, whereas the local conditions were sometimes accurate and sometimes inaccurate.

The purpose of this paper is to extend the formulation of reference [3] to the case of
a three-dimensional sound �eld. Again, we use a rectangular duct so that the boundary
surface is a simple plane. Because we must consider interactions between all pairs of points
on this boundary surface, the boundary condition is a tensor operator.

The following section describes the problem in detail. Then the tensor boundary condition
is derived for the case of a semi-in�nite duct. This is followed by a discrete formulation and
solution process for the Helmholtz (wave) equation with the nonlocal boundary condition.
Computational results are given for several point sources oscillating at both low and high
frequencies, and these results are compared to computations from convergent series solutions.
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Figure 1. Semi-in�nite duct geometry.

2 Problem Description

We wish to demonstrate the utility of a nonlocal boundary condition on a simple three-
dimensional acoustics problem with a known solution. To this end, we consider the semi-
in�nite rectangular duct shown in �gure 1. We want to �nd the numerical solution of the
Helmholtz equation with a monopole source:

r2p̂ + k2p̂ = ŝ (1)

with local admittance boundary conditions on the entrance boundary plane, at x = 0, and
on the side walls. These local admittance boundary conditions have the form

v̂n =
1

���c
�̂p̂ + v̂s (2)

where �� and �c are the ambient density and sound speed, respectively. This problem arises
in duct acoustics and has a series solution. Physically, p̂ is the complex acoustic pressure in
the duct, and k = !=�c, where ! is the frequency of the disturbance. That is,

p̂(~x; t) = p̂(~x)e�{!t (3)

where { is the unit complex number
p�1. The physical side conditions are speci�ed by

the local dimensionless admittances �, and a nonlocal admittance radiation condition will
be utilized on the surface x = L. This nonlocal boundary condition is derived from the
following two constraints:

1. The general solution in the \outgoing wave" section (x � L), including the boundary
(x = L), can be given as a series of radiating acoustic modes, or eigenfunctions, which
satisfy the side wall boundary conditions.

2. The solution and its derivative with respect to x are continuous across the computa-
tional boundary plane (x = L), as required by the axial component of the momentum
equation and by the continuity equation at the boundary plane.

For the problem considered here, these conditions lead directly to a natural nonlocal bound-
ary condition.
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Real duct problems are neither semi-in�nite or likely to be limited to a �nite set of modes,
given an arbitrary source, so that the boundary condition will be only approximate. However,
the intention here is to formulate a discrete boundary condition suitable for coupling with an
internal discretization. In �nite discretizations, only a �nite number of modes are possible,
and the discrete boundary condition will couple naturally with the interior discretization.
Note that in an experimental setting, data at a radiation boundary are naturally described
in terms of exterior modes and we show that this boundary condition is also useful in a
numerical setting.

The discrete radiation boundary condition is a tensor equation of the form

ûjk =
1

���c
�̂jkj0k0 p̂j0k0 + ûsjk (4)

where p̂j0k0 is the complex pressure at grid point (j0; k0), ûjk is the axial velocity at grid point
(j; k), and repeated indices are summed (Einstein summation notation) over the �nite range
of integers j and k. The index s refers to the source position, while all other indices are related
to the numerical grid. For example, they correspond to samples of the pressure and axial
velocity at grid points yj and zk on planes where x is constant. Boundary condition (4) is a
generalization of the two-dimensional nonlocal boundary condition developed in reference [3].
Reference [4] showed that this nonlocal boundary condition is more accurate than several
other local boundary conditions in the two-dimensional case.

The nonlocal boundary condition is computationally more expensive than local boundary
conditions; however, section 4 provides evidence that the nonlocality is necessary to specify
a proper physical interface between the computational domain and the exterior domain at
an arbitrary boundary plane in a duct. Local boundary conditions involve some assumptions
about the waves and their direction of propagation at the boundary. They do not permit
general wave �elds in the exterior domain.

The three-dimensional discretization of the Helmholtz equation with the nonlocal bound-
ary conditons results in a large, sparse non-Hermitian matrix equation for the pressures in
the computational domain. The matrix dimension for the higher frequency problems was of
order 105. Because of the structure and large size of this matrix, attempts at solutions with
direct methods were unsuccessful in the high-frequency cases. Solutions were attempted with
two iterative, nonstationary Krylov subspace techniques: the QMR and TFQMR methods
outlined in section 4. These iterative methods succeeded after the matrix was precondi-
tioned. These techniques proved to be quite robust and are used to get the results shown in
section 5.
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3 Tensor Admittance Boundary Condition

Assume that at the boundary plane x = L the velocity data are linearly related to the
pressure data by an admittance tensor

û(L; yj; zk) =
1

���c
�̂jkj0k0 p̂(L; yj0; zk0) (5)

where û is the axial velocity and p̂ is the pressure. The tensor �jkj0k0 will be referred to as
the nodal admittance tensor. In general, the tensor � depends on the general solution in the
exterior domain. We may, for example, specify that the exterior solution is composed only
of modes that describe rightward moving waves in the duct in �gure 1. In many practical
instances, known analytic forms of the exterior solution exist. Radiating modes from an
in�nite duct will be used here for analysis.

Note that calculation of the modes is not an explicit part of the solution scheme even

though they are used to construct the boundary condition tensor �̂jkj0k0 . This construction
is done only once in advance of any calculations in the computational domain, and the
boundary condition data are read or linked into the computational solution scheme. The
following section gives a detailed formulation of the nonlocal admittance tensor for the in�nite
three-dimensional duct radiation condition.

3.1 In�nite Three-Dimensional Duct Radiation Condition

Modal solutions to rectangular-duct acoustic equations are

p̂�
mn

(x; y; z) = ���c2�mn(y; z)e
�{kxmn(x�L) (6)

The function �mn(y; z) is the mode function and the time factor e�{!t is understood. Further,
the sign of the imaginary part of the complex axial wavenumber kxmn is positive. The mode
function is de�ned by

�mn(y; z) = �m(y) n(z) (7)

�m(y) = ame
+{kymy + bme

�{kymy (8)

 n(z) = cne
+{kznz + dne

�{kznz (9)

kxmn =
q
k2 � (k2

ym
+ k2

zn
) (10)

where eigenvalues kym and kzn are computed with the methods in appendix A and the modal
constants are computed using the methods of appendix B. In the simplest case of a hard-
walled duct, kym = m�=H and kzn = n�=W . In soft-walled ducts, these eigenvalues are
complex variables.

The pressure and velocity in a �eld of progressive waves in the in�nite duct for (x � L)
is

p̂(x; y; z) = ���c2
1X

m;n=0

P+
mn
�mn(y; z)e

+{kxmn(x�L) (11)

û(x; y; z) = �c
1X

m;n=0

U+
mn
�mn(y; z)e

+{kxmn(x�L) (12)

where P+
mn

and U+
mn

are arbitrary constants that represent the modal pressure and velocity
amplitudes. This solution is the general wave �eld solution in the exterior domain. The
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axial momentum equation gives an alternate formula for the velocity

û(x; y; z) = �c
1X

m;n=0

 
kxmn

k

!
P+
mn
�mn(y; z)e

+{kxmn(x�L) (13)

Consistency of the two formulas requires that the velocity and pressure coe�cients be related
by

P+
mn

=

 
k

kxmn

!
U+
mn

(14)

The constants of proportionality are called the modal impedances Zmn:

Zmn =

 
k

kxmn

!
(15)

With these modal impedances, the proportionality of pressure and velocity is expressed as

P+
mn

= Zmn U+
mn

(16)

The above impedance formula is a special adaptation of a general formula that relates the
coe�cients of any source-free wave �eld.

Pmn =
1X

m0;n0=0

Zmnm0n0 Um0n0 (17)

Equation (17) is a general modal impedance boundary condition that can represent any linear
homogeneous boundary condition for the duct. It can also represent radiation e�ects at the
end of a �nite duct. The modal boundary condition that represents radiation in an in�nite
duct is recovered from the general formula with the de�nition

Zmnm0n0 =

 
k

kxmn

!
�mm0�nn0 (18)

where �mm0 is the Kronecker delta. The general modal formulas for the pressure and velocity
at the plane x = L are, then,

p̂(L; y; z) = ���c2
1X

m;n=0

�mn(y; z)
1X

m0;n0=0

Zmnm0n0 Um0n0 (19)

û(L; y; z) = �c
1X

m;n=0

�mn(y; z)Umn (20)

3.2 Nodal Impedance Boundary Condition

Modal solutions to duct acoustic problems are e�ective when the duct is uniform or has a
�nite number of uniform sections joined together [5]. In regions where the duct is highly
nonuniform, general numerical methods are needed. Examples of nonuniform regions are
transitions around centerbodies and sections that contain turbomachinery. Numerical meth-
ods applied to these regions need boundary conditions expressed in terms of the data struc-
tures of the method|typically, the values of the dependent variables at grid points, or nodes,
of the numerical method. Assuming that the dependent variables are pressure and velocity
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and that the acoustic �eld exterior to the computational domain is de�ned by linear equa-
tions, then a linear relation must exist between these variables on the boundary surface,
which is part of both the interior, or computational, domain and the exterior linear domain.
With a two-dimensional surface grid of points (yj; zk), the most general linear homogeneous
relation between pressure and velocity over the grid of nodes is called the nodal impedance
Zjkj0k0 :

p̂jk = ���c
X

i0;j0=1

Zjkj0k0ûj0k0 (21)

Exterior sources may be included by adding an inhomogeneous term to the above equation:

p̂jk = ���c
X

i0;j0=1

Zjkj0k0ûj0k0 + p̂sjk (22)

The unspeci�ed summation ranges in the nodal impedance formulas are �nite. We assume a
rectangular computation grid with 1 � j � J , 1 � k � K for simplicity. The points yj; zk
are taken to be equally spaced with intervals �y;�z. These assumptions can be relaxed;
however, this step adds nothing to the general implementaton here.

A relationship clearly exists between the modal impedance and the nodal impedance.
The relation is made explicit by utilizing the nodal velocities to solve for the modal velocity
coe�cients and placing the resulting solution in an expression for the nodal pressures. The
solution, in its simplest form, requires an equal number ofmodes and nodes in each coordinate
dimension.

One-dimensional data structures are needed for the two-dimensional arrays. At a �xed
axial location (x = L), a vector of nodal velocities is de�ned by

ûjk = û(L; yj; zk) (23)

f ûjk g = f f ûk gj g (24)

where the second script, k, varies through its range before the �rst script j is incremented.
The vector on the left side of equation (23) is a column vector of column vectors. A similar
structure is adopted for the nodal pressures:

p̂jk = p̂(L; yj ; zk) (25)

f p̂jk g = f f p̂k gj g (26)

The nodal velocities are related to the modal velocity coe�cients through the �nite matrix
approximation of the in�nite sum in equation (20):

f ûjk g = �c [�jkmn] fUmn g (27)

�jkmn = �mn(yj; zk) (28)

In the above matrix, the �rst two scripts, jk are row dependent and the second two scripts
are column dependent.

The modal velocity coe�cients are given by a matrix inversion

fUmn g = �c�1 [�jkmn]
�1 f ûjk g (29)

Now, the nodal pressure is the �nite matrix approximation to the in�nite sum of equa-
tion (19):

f p̂jk g = ���c2 [�jkmn] [Zmnm0n0] fUm0n0 g
= ���c [�jkmn] [Zmnm0n0 ] [�j0k0m0n0 ]

�1 f ûj0k0 g (30)
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Consequently, the nodal impedance is given by the following similarity transformation of the
modal impedance:

[Zjkj0k0 ] = [�jkmn] [Zmnm0n0 ] [�j0k0m0n0 ]
�1

(31)

This result gives the desired nodal impedance relation between pressure and velocity:

f p̂jk g = ���c [Zjkj0k0] f ûj0k0 g (32)

3.3 Nodal Admittance Boundary Condition

Other boundary conditions are readily formed with the nodal impedances. For example, a
Helmholtz solver that utilizes only pressure as the dependent variable would require a relation
between the pressure and the pressure gradient on the bounding surface. This relation must
be nonlocal in order to be completely general.

In the present case of a duct for which the computational domain is bounded by the
plane x = L, the axial momentum equation gives the axial velocity as

f ûjk g = � {

���ck

n
@p̂(yj;zk)

@x

o
(33)

The pressure gradient and pressure are then related byn�
@p̂

@x

�
jk

o
= {k [�jkj0k0 ] f p̂j0k0 g (34)

where the nodal admittance matrix is the inverse of the nodal impedance matrix:

[�jkj0k0] = [Zjkj0k0 ]
�1 (35)

This nodal admittance matrix is clearly a similarity transformation of a modal admittance
matrix. Elements of this modal admittance matrix for an in�nite duct would be the inverse
of the elements in equation (18). Let the modal admittance be de�ned as the inverse of the
modal impedance as shown:

[Bmnm0n0] = [Zmnm0n0 ]
�1

(36)

The radiation condition for an in�nite uniform duct is

Bmnm0n0 =

 
kxmn

k

!
�mm0�nn0 (37)

The nodal admittance is a similarity transformation of the modal admittance:

[�jkj0k0 ] = [�jkmn] [Bmnm0n0 ] [�j0k0m0n0]�1 (38)

3.4 Tensor Product Transformations

The matrices that de�ne the boundary condition transformations become large for high-
frequency computations. If we have a duct lateral dimension of 23 = 8 wavelengths and the
same number of points per wavelength in the computation, then each dimension requires
26 = 64 grid points. The impedance and admittance matrices would have a dimension of
212 = 4096. Direct inversion should be avoided for these large matrices. Fortunately, the
matrices in the boundary conditions are tensor products so that the computations are done
separately for each dimension with the simpli�cations of the tensor product identities. These
identities are given here to show the explicit computation procedures.
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The similarity matrix can be written as

[�jkmn] = [�jm[ kn]] (39)

[�jm] = [�m(yj)] (40)

[ kn] = [ n(zk)] (41)

The similarity matrix [�jkmn] is formed with blocks of the matrix [ kn] scaled by elements
of the matrix [�m(yj)]. Tensor product notation for this form is

[�jkmn] = [�jm]
 [ kn] (42)

In this notation, the second matrix supplies the block that is scaled by an element of the
�rst matrix. With this convention, the inverse of the tensor product is the tensor product
of the inverses, taken in the same order:

[�jkmn]
�1

= [�jm]
�1 
 [ kn]

�1
(43)

The admittance and impedance matrices transform a vector into another vector. Let x; y
be (N � 1) matrices and A be an (N � N) matrix. The transformation y = Ax then takes
N multiplications per row and N additions per row, assuming y is initially zero. Thus, a
single transformation has 2N2 operations. The admittance transformation is

f fug g = [�]
 [ ] [B] [�]�1 
 [ ]�1 f fpg g (44)

Each subvector is an (N � 1) matrix, and each sub-block matrix is an (N �N) matrix. The
transformation can proceed from right to left. The �rst operation is to multiply [ ]�1 times
each of the N subvectors fpg. This step requires 2N3 operations, and returns N subvectors.
The next operation is to take linear combinations of these subvectors with the elements
of each row of the matrix [�]�1 as coe�cients. This step also requires 2N3 operations and
produces a vector of N2 elements. Premultiplication of this vector by the diagonal matrix [B]
requires N2 operations. Each of the next two operations takes 2N3 operations, so that the
total number of operations is 8N3 + N2 for each transformation. By contrast, the full form
of the matrix transformation would require 2(N2)2 = 2N4 operations. The tensor product
form is superior to the expanded form for computation with iterative techniques. The tensor
product is also superior for storage. Each matrix has N2 elements, so that the total storage
is 5N2 words. The expanded form of the transformation would use N4 words.
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4 The Discrete System

The discrete system represents the Helmholtz equation and all boundary conditions in dis-
crete form. The Laplacian operator in three dimensions is represented by a seven-point
stencil as follows:

r2p̂ijk =
1X

i0j0k0=�1

ai0j0k0 p̂i+i0;j+j0;k+k0 (45)

where the stencil data ai0j0k0 depend on the algorithm that is implemented. Data for the
second-order-accurate central-di�erence scheme are

a0;0;0 = �2
 

1

�x2
+

1

�y2
+

1

�z2

!
(46)

a�1;0;0 =
1

�x2
(47)

a0;�1;0 =
1

�y2
(48)

a0;0;�1 =
1

�z2
(49)

where �x, �y, and �z are the grid spacings in the respective dimensions.
Local admittance boundary conditions on the \entrance plane" and sidewalls are all taken

in the form of equation (2). The momentum equations for the x, y, and z directions are

@p̂

@x
+ {k���cû = 0 (50)

@p̂

@y
+ {k���cv̂ = 0 (51)

@p̂

@z
+ {k���cŵ = 0 (52)

If we combine equations with the local admittance boundary conditions on the entrance and
side walls, then we obtain

@p̂1;j;k

@x
� {k���c�0;j;kp̂1;j;k = �{k���cûsjk; 1 � j � J; 1 � k � K (53)

@p̂i;1;k

@y
� {k���c��H=2;i;kp̂i;1;k = 0; 1 � i � I; 1 � k � K (54)

@p̂i;J;k

@y
+ {k���c�+H=2;i;kp̂i;J;k = 0; 1 � i � I; 1 � k � K (55)

@p̂i;j;1

@z
� {k���c��W=2;i;j p̂i;j;1 = 0 1 � i � I; 1 � j � J (56)

@p̂i;j;K

@z
+ {k���c�+W=2;i;jp̂i;j;K = 0 1 � i � I; 1 � J � J (57)

A discrete nonlocal admittance boundary condition, as described in the previous section, is
used on the exit plane x = xI = L.

@p̂I;j;k

@x
= {k�j;k;j0;k0 p̂I;j0;k0 (58)
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Figure 2. Sparse matrix from the linear system. Nonzero elements are indicated by dark

marks. The block in the lower right corner is generated by the nonlocal boundary condition.

The sum in equation (58) is over the entire y-z grid at the boundary. Forward or back-
ward di�erence formulas were utilized at the computational domain surfaces to avoid the
introduction of \ghost points."

The three-dimensional array of unknowns pi;j;k is arranged as a column matrix, where
the indices i, j, and k vary in reverse order with their position; that is, k varies �rst, then j
varies, and then i varies last.

f p̂ijk g = p̂(xi; yj; zk) = f f f p̂k gj gi g (59)

f ûijk g = û(xi; yj; zk) = f f f ûk gj gi g (60)

Major partitions of this column of unknowns are based on the axial index i. Each partition
is a column matrix that contains the unknown pressures on a single cross-sectional plane.
Subpartitions of these columns are based on the y-dimension index j. These subpartitions
de�ne column matrices for which only the z-dimension index k varies.

The system matrix is the square coe�cient matrix of the above column of unknowns.
Its nonzero elements are the coe�cients from the di�erence operator (45){(49), the local
boundary conditions (53)-(57), and the nonlocal admittance boundary condition (58). The
system matrix is very sparse (most of its elements are zero) because the Helmholtz equation
is a local operator; however, a signi�cant block of (J � K) nonzero elements exists due to
the nonlocal boundary condition. Figure 2 is a graphic illustration of the system matrix
structure. This system matrix is clearly sparse, except for the large data block in the lower
right corner where the coe�cients for the nonlocal boundary condition are stored.

Direct solutions to the above system matrix were attempted and found to be impractical,
at least for workstation calculations. Banded matrix solvers could not be used because they
�ll the inner null bands of the sparse matrix with nonzero elements. With matrix dimensions
O [105], the matrix bandwidth would be O [103], and a banded solver would create O [108]
elements. Consequently, the iterative QMR and TFQMR techniques described below were
selected to solve the discrete system matrix equation. These methods are known as Krylov
subspace techniques. Further details on these techniques can be found in references [6],
[7], and [8]. In accordance with the recommendation of Freund, [9], the Krylov subspace
techniques were applied to the system matrix in its complex form. Otherwise, when a
complex system of dimension N is written as a real system of dimension 2N , then a matrix
may be produced with a distribution of eigenvalues that includes the origin or values very
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near the origin. A matrix with such values is singular or nearly singular and can present
di�culties for the QMR and TFQMR Krylov subspace techniques.

4.1 Preconditioning Concepts

In some cases, the system matrix equation could not be solved with the iterative techniques
without the application of preconditioning. This preconditioning was necessary for conver-
gence of the iteration (not just for acceleration of the rate of convergence). In other cases
that could be solved without preconditioning, the preconditioning accelerated the rate of
convergence. Thus, preconditioning was always bene�cial.

The notion of preconditioning is a simple. Instead of solving the original system Ax = b,
an equivalent system A0x0 = b0 is solved, where A0 = PAQ, x0 = Q�1x, and b0 = Pb. The
equivalent system must be constructed such that the matrixA0 has more desirable properties
than the original matrix A. An example of a more desirable property is an improved matrix
condition number, which makes the equivalent system amenable to solution by iterative
techniques.

If an invertable matrix can be chosen in factored formM =M1M2, then the elements of
the equivalent preconditioned system A0x0 = b0 are of the form

A0 =M1
�1AM2

�1; b0 =M1
�1b; x0 =M2x (61)

The corresponding Krylov subspace technique generates in a translated subspace,

x0
n
2 x00 +Kn(r

0
0; A

0) (62)

where Kn(r
0
0; A

0) = span fr00; A0r00; A
02r00; � � � ; A0n�1r00g. In terms of the original system,

Krylov iterates xn and residuals rn = b�Axn are connected by

xn =M2
�1x0n 2 x0 +Kn(M

�1r0;M
�1A) and rn =M1r

0
n (63)

For minimum residual techniques, the right preconditioning matrix M2 = I is the identity.
This identity matrix is generally preferred so that the preconditioned residual is the same as
the ordinary residual.

The more common preconditioners are reviewed in reference [10]. The choice of precon-
ditioners used here was in
uenced more by their availability than by a detailed evaluation
of their suitability for the problem at hand. The ones used here were members of a general
class of preconditioners that are implemented within the software package qmrpack [11].

4.2 Methods of Preconditioning

Two preconditioning methods were found that worked e�ectively. These methods were the
Symmetric Successive Overrelaxation (SSOR) method and the Incomplete Gaussian Elimi-
nation (ILU) method. These methods are described more fully below.

4.2.1 SSOR Method

The SSOR method is an interative technique for solving a linear system Ax = b. The matrix
A is written as D�E�F , where D, E, and F are the diagonal, strict lower triangular, and
strict upper triangular portions of A, respectively. For the classic Successive Overrelaxation
(SOR) technique, a parameter !, which is the overrelaxation parameter, is introduced and
Ax = b is rewritten as

(D � !E)x� [(1� !)D + !F ]x = !b (64)
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An iterative method is produced by letting the leftmost x be the new iterate u(m+1) and the
rightmost x be the old iterate u(m):

(D � !E)u(m+1) = [(1� !)D + !F ]u(m) + !b (65)

or
u(m+1) = (D � !E)�1 [(1� !)D + !F ]u(m) + (D � !E)�1!b (66)

The inverse is only slightly more expensive to compute than a matrix multiplication because
the matrix is lower triangular.

The SSOR technique is a modi�cation of the SOR technique in which the vector is
modi�ed from the top to the bottom and then from the bottom back up to the top to
complete one iteration. The SSOR technique has the form

u(m+1=2) = (D � !E)�1 [(1 � !)D + !F ]u(m) + (D � !E)�1!b
u(m+1) = (D � !F )�1 [(1 � !)D + !E]u(m+1=2) + (D � !E)�1!b (67)

Written in one step, SSOR is an iteration u(m+1) =Mu(m) + f , where

M = I � !(2! � 1)(D � !F )�1D(D � !E)�1A (68)

and f is a �xed vector that may be worked out from (67). The idea in any iterative technique
is to minimize M in some way (usually by minimizing the spectral radius). Ideally, M =
0 so that the inversion can be accomplished in one step. If M is \small," then (D �
!F )�1D(D � !E)�1 is a good approximate inverse of A (modulo a constant multiplier);
moreover, because of the triangular form of its factors, it is easily computed. This matrix
M is the preconditioner in the SSOR technique.

4.2.2 ILU Method

The ILU method has variants that are designated by ILU(n), where n is an integer. The
idea that underlies the basic ILU(0) preconditing is taken from Gaussian elimination. First,
�nd an upper triangular matrix U and lower triangular L such that A = LU . The ILU
preconditioning contains a remainder term A = LU + R and imposes a constraint on the
structure of L+ U (i.e., L+ U must have nonzero elements within the envelope in which A
has nonzero elements). The remainder term results because �ll-in is not allowed at elements
of L and U that were already zero. With this constraint, the underlying matrix-vector
multiplication with the preconditioned matrix is no more expensive than when applied to
the original matrix A. The ILU(0) may be extended by allowing additional inward �ll in L
and U , which leads to the ILU(p) algorithms, where p is the maximum inward �ll. Further
details of the ILU(0) algorithm and its variants may be found in [10].

Numerical experiments with both preconditioning methods showed that they were e�ec-
tive in accelerating the rates of convergence of the iterative solutions. The ILU method was
found to be more reliable for this problem; however, so that it was adopted to prepare the
results shown in the following section.
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5 Results

This section contains the results of numerical solution of the discrete system outlined in
section 4. The computationally less di�cult results are presented �rst and the more di�cult
results are presented later. The higher frequencies and more complicated sources present
increased di�culties. Two types of sources are speci�ed at the inlet boundary that represent
opposite extremes: a plane wave source and a point source. The source conditions are
speci�ed as

@p̂1;j;k

@x
= v̂sjk 1 � j � J; 1 � k � K

If v̂sjk = C, where C is a complex constant, the source is a plane wave source. If v̂sjk =

AAAAA AAAA

Figure 3. Approximate representation of the delta function by an inverted cone. Support of
the cone extends over �ve grid points.

C �(y � y0; z � z0), the source is a point source. Series solutions for both source boundary
conditions are derived in appendix C. The delta-function source is not representable by a
single continuous function or on a discrete grid. In the following numerical experiments, the
truncated modal series was used to analytically represent the delta function. Similarly, an
inverted cone of unit volume, such as the one in �gure 3, was used to numerically represent
the delta function.

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

x

y

z

Figure 4. Duct computational domain. The shaded region indicates the horizontal plane on
which pressure data are shown in subsequent plots.

The plotted results to be shown later are the complex pressure on a horizontal plane that
cuts through the center of the duct as shown in �gure 4. Some plots show the result of the
application of the boundary condition at di�erent locations in the duct. The purpose here
is to show that the solution is fairly insensitive to the point of application of the boundary
condition. In each computation, a uniform grid with equal grid spacing in each coordinate
direction was used. The grid spacing was choosen to give a resolution of 10 points per
wavelength.
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5.1 Hard-Walled Duct with Plane Source

In a hard-walled duct, the admittance of each of the four side walls is identically zero. Plots
of the real part of acoustic pressure are shown in Figure 5 for a planar source that oscillates
at a frequency of 500 Hz. As expected, the acoustic pressure is independent of the spanwise
direction and no evidence of any re
ections from the radiation boundary is observed. The
interior solution is in excellent agreement with the analytical solution on this scale. Real
and imaginary parts of the acoustic pressure di�ered by a phase shift of 90�, so only the real
part of the acoustic pressure is plotted here.
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Figure 5. Real part of the pressure �eld due to a 500 Hz plane-wave source in a hard-walled
duct. Results computed with a (17� 17 � 17) grid in a 1.0 m cubic domain.

Figure 6 shows the results obtained for the real part of the acoustic pressure, where the
frequency of the planar source has been increased to 1,000 Hz. Here, the number of grid
points per meter was doubled, to accommodate the shorter wavelength, and the radiation
boundary condition was applied at 0.5 m down the duct (preserving the total number of grd
points). Results are consistent with those obtained at 500 Hz. Again, the imaginary part of
the acoustic pressure was not plotted because it was identical to the real part, except for a
phase shift of 90�.

5.2 Hard-Walled Duct with Point Source

To demonstrate that the solution is independent of the radiation boundary condition for
all sources, a point source was used to generate the acoustic wave pattern in the hard wall
duct. Point source calculations are a severe test of both the numerical method and radiation
boundary condition. Classic modal analysis shows that eigenfunction components of the
acoustic �elds generated by point sources are of two types: modes that decay exponentially
in space (cut-o� modes) and modes that are purely periodic in space (cut-on modes). The
real and imaginary parts of the acoustic pressure calculated for a point source that oscillates
at 1,000 Hz are shown in �gures 7 and 8 respectively. The radiation boundary condition
was applied 1.0 m from the source. Several cut-on modes generate a complicated pressure
pattern away from the source. Near the radiation boundary, the acoustic pressure �eld,
computed from the numerical method, is identical to the modal series results. However, in
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Figure 6. Real part of the pressure �eld due to a 1000 Hz plane-wave source in a hard-walled
duct. Results computed with a (17�33�33) grid in a section with axial dimension of 0.5 m.

the vicinity of the point source, the imaginary part of the acoustic pressure computed from
the modal series and the numerical method show a discrepancy. The discrepancy between
the numerical method and modal series in the vicinity of the point source was expected.
Near the source plane, a large number of duct modes and, hence, grid points are needed to
represent the acoustic point source. Thus, the discrepancy near the source is believed to be
caused by the coarseness of the grid near the source.

To further investigate the discrepancy in the computed acoustic �eld near the point source
at 1,000 Hz, numerical results were obtained when the radiation boundary was moved to
0.5 m from the source. These results are shown in �gures 9 and 10.

Note that the movement of the radiation boundary closer to the source had little or
no e�ect on the acoustic pressure �eld computed by the numerical method. This result
lends further credence to the hypothesis that the discrepancy near the source is due to
the coarseness of the grid (because the grid spacing was not changed when the radiation
boundary was moved closer to the source). The basic solution process would be expected to
work on an uneven grid; however, this case was not tested.

For point sources that oscillate at frequencies above 1000 Hz, the combined e�ect of many
cut-on and cut-o� modes generates a pattern that indicates multidirectional wavefronts that
would not be captured with simpler local-plane-wave type of boundary conditions. Numerical
results are plotted in �gures 11 and 12 for a point source that oscillates at 1,500 Hz. The
radiation boundary condition was applied at 1.0 m from the source. Again, a discrepancy
can be observed in the imaginary part of the pressure in the vicinity of the point source.
When the radiation boundary is placed at 0.5 m from the source (�gures 13 and 14, this
discrepancy is still present.
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Figure 7. Real part of the pressure �eld due to a 1000 Hz point source in a hard-walled duct.
Nonlocal boundary condition applied at 1.0 m. Results computed with a (33�33�33) grid.
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Figure 8. Imaginary part of the pressure �eld due to a 1000 Hz point source in a hard-walled
duct. Nonlocal boundary condition applied at 1.0 m . Results computed with a (33�33�33)
grid.
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Figure 9. Real part of the pressure �eld due to a 1000 Hz point source in a hard-walled duct.

Nonlocal boundary condition applied at 0.5 m. Results computed with a (17�33�33) grid.
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Figure 10. Imaginary part of the pressure �eld due to a 1000 Hz point source in a hard-walled

duct. Nonlocal boundary condition applied at 0.5 m. Results computed with a (17�33�33)
grid.
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Figure 11. Real part of the pressure �eld due to a 1500 Hz point source in a hard-walled
duct. Nonlocal boundary condition applied at 1.0 m. Results computed with a (49�49�49)
grid.
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Figure 12. Imaginary part of the pressure �eld due to a 1500 Hz point source in a hard-walled

duct. Nonlocal boundary condition applied at 1.0 m . Results computed with a (49�49�49)
grid.
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Figure 13. Real part of the pressure �eld due to a 1500 Hz point source in a hard-walled
duct. Nonlocal boundary condition applied at 0.5 m. Results computed with a (25�49�49)
grid.
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Figure 14. Imaginary part of the pressure �eld due to a 1500 Hz point source in a hard-walled

duct. Nonlocal boundary condition applied at 0.5 m. Results computed with a (25�49�49)
grid.
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5.3 Soft-Walled Duct with Point Source

The radiation condition has also been tested with acoustically treated, or soft, walls. In
contrast to hard-walled ducts, acoustically treated ducts have surfaces that are not perfectly
re
ecting. Results for the soft-walled duct case were computed with the admittance � =
:5�:5{ in equation (2). Acoustically treated walls damp out acoustic disturbances and reduce
the number of contributing waves compared with the hard-walled case. To limit the number
of graphs, results for the soft-walled duct are only presented for the more-troublesome point
source.

Figures 15 through 18 show the results of a point source that oscillates at 1,000 Hz in
the soft-walled duct. Figures 15 and 16 show results for the radiation boundary located
1.0 m from the source; �gures 17 and 18 show results for the radiation boundary located
at 0.5 m from the point source. On this scale, the numerical solution is not a�ected by the
distance of the radiation boundary from the point source. The discrepancy that occurred in
the imaginary part of the acoustic pressure for hard-walled ducts is not observed in the lined
duct. This di�erence is believed be caused by the fact that the lining has a damping e�ect on
the acoustic waves and also reduces the number of contributing waves in comparison with to
those in the rigid-walled duct. The agreement between the results for the numerical solution
and modal series is excellent. Re
ections from the nonlocal radiation boundary condition
are not evident at this frequency.

Figures 19 through 22 show results of a 1500 Hz point source that oscillates in the lined
duct. Signi�cant damping of the acoustic waves is clearly observed, in comparison with the
corresponding results for the hard-walled duct. The conclusions drawn from this set of plots
are consistent with those for 1,000 Hz.
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Figure 15. Real part of the pressure �eld due to a 1000 Hz point source in a soft-walled duct.
Nonlocal boundary condition applied at 1.0 m. Results computed with a (33�33�33) grid.
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Figure 16. Imaginary part of the pressure �eld due to a 1000 Hz point source in a soft-walled
duct. Nonlocal boundary condition applied at 1.0 m. Results computed with a (33�33�33)
grid.
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Figure 17. Real part of the pressure �eld due to a 1000 Hz point source in a soft-walled duct.

Nonlocal boundary condition applied at 0.5 m. Results computed with a (17�33�33) grid.
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Figure 18. Imaginary part of the pressure �eld due to a 1000 Hz point source in a soft-walled

duct. Nonlocal boundary condition applied at 0.5 m. Results computed with a (17�33�33)
grid.
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Figure 19. Real part of the pressure �eld due to a 1500 Hz point source in a soft-walled duct.
Nonlocal boundary condition applied at 1.0 m . Results computed with a (49 � 49 � 49)
grid.
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Figure 20. Imaginary part of the pressure �eld due to a 1500 Hz point source in a soft-walled

duct. Nonlocal boundary condition applied at 1.0 m. Results computed with a (49�49�49)
grid.
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Figure 21. Real part of the pressure �eld due to a 1500 Hz point source in a soft-walled duct.

Nonlocal boundary condition applied at 0.5 m. Results computed with a (25�49�49) grid.
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Figure 22. Imaginary part of the pressure �eld due to a 1500 Hz point source in a soft-walled

duct. Nonlocal boundary condition applied at 0.5 m. Results computed with a (25�49�49)
grid.
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6 Concluding Remarks

A nonlocal boundary condition has been formulated for the Helmholtz equation in three-
dimensional Cartesian coordinates. The boundary condition represents the nonre
ection
condition on a cross-sectional plane within a semi-in�nite rectangular duct. This boundary
condition is completely independent of the wave �eld and transmits waves from any source
distribution without perceptible re
ection. The boundary plane can be moved close to the
source without a�ecting the solution for the wave �eld.

In order to demonstrate the boundary condition, a three-dimensional system of �nite-
di�erence equations was written to model acoustic waves generated by arbitrary sources in
a semi-in�nite duct with the Helmholtz equation. Source conditions were prescribed at the
entrance plane, and conventional local boundary conditions were used on the duct sidewalls.
The nonlocal boundary condition was applied on the exit or end plane of the duct, which
de�nes the extent of the computational domain. On this end plane, which can be placed at
an arbitrary position, the acoustic �eld must be the same as the �eld within a semi-in�nite
duct with an arbitrary source distribution.

The resulting system of equations was large and sparse. In order to solve this system for
practical frequencies for which the duct dimensions were many multiples of the wavelength,
two types of preconditioning were investigated. These two methods were Symmetric Succes-
sive Over-relaxation (SSOR) preconditioning and Incomplete Gaussian Elimination (ILU)
preconditioning. The ILU method was found to be more reliable for this problem. System
solutions were found with ILU preconditioning and Krylov subspace iterative schemes.

To assess the e�ectiveness of the nonlocal boundary condition, numerical solutions were
compared with classical series solutions. The physical model used in the comparison was a
duct that measured 1m � 1m in cross section. The duct was semi-in�nite, but the com-
putational domain was closed at the arbitrarily located right end by the nonlocal boundary
condition. Comparisons were made for two di�erent source types (i.e., plane waves and point
sources) at the left end. Comparisons were also made for both hard and absorbing side walls.
Computations were made for 500, 1,000, and 1,500 Hz at standard atmospheric conditions
to generate complex sound �elds. Within this context, the closing boundary was moved to
various positions to verify that the predicted sound �eld was invariant to its location. In
all cases, the boundary location had no perceptible e�ect on the predicted sound �eld. The
numerically predicted �eld matched the �eld produced by the series solution with a high
degree of accuracy. Because the boundary condition represents the exterior domain general
solution, it can be used to obtain computional solutions for irregular interior domains when
classic series solutions are not available.

These examples demonstrate that nonlocal boundary conditions on the surface of a three-
dimensional computational domain can accurately represent the e�ect of a surrounding in�-
nite domain on the acoustic solutions within the �nite computational domain. Because the
solutions are invariant to the location of the computational boundary, the nonlocal boundary
conditions provide a means of minimizing the size of the computational domain.
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A Eigenvalue Computation

A.1 High-Order Eigenvalues

When the walls are hard, the eigenvalues are multiples of �; when the walls have �nite
admittances, a complex characteristic equation must be solved for the eigenvalues. This step
can easily be the most di�cult part of the computation, so the method is developed here in
considerable detail. We group the admittance � at the wall with the frequency parameter k
and the height H by de�ning �0 � ���c�0kH and �H � ���c�2.

If we assume elementary solutions of the form e�{kyy and apply admittance boundary
conditions at the lower and upper walls, the following equation is obtained for the eigenvalues
kyH:

1 � e2ikyH
0
@1� �H

kyH

1 + �H

kyH

1
A
0
@1� �0

kyH

1 + �0

kyH

1
A = 0 (69)

In the case of hard walls, where �0 = �H = 0, solutions to equation (69) are

kyH = m�; m = 0; 1; 2; � � � (70)

where �m is used here as a measure of the displacement of an eigenvalue from its nominal
hard-walled position in the complex plane.

This elementary case suggests the de�nition

(kyH)m = m� + �m; m = 0; 1; 2; � � � (71)

A.1.1 Characteristic Equation for Higher Modes, m > 0

The characteristic equation for the higher modes can be given in logarithmic form as

F (�m) = �m

+
{

2
log

�
1 +

�0

m� + �m

�
+
{

2
log

�
1 +

�H

m� + �m

�

� {

2
log

�
1� �0

m� + �m

�
� {

2
log

�
1� �H

m� + �m

�

= 0 (72)

This form of the characteristic equation shows clearly that the solution �m approaches zero
in the limit where m ! 1. The points at which m� + �m = ��0;H are singularities of F
that cannot be solutions. These points should not cause di�culty, except possibly in the
case where m = 0. The explicit form of equation (72) is important. By computing each
logarithim separately, we avoid crossing the branch cut, which may introduce an error of �
in the value of the complex log.

A.1.2 Newton's Method for Solution of Higher Modes

Newton's method for solution of equation (72) utilizes an iteration for �m given by the
replacement operation

�m �m � F (�m)

F 0(�m)
(73)

where the derivative of the characteristic function is

F 0(�m) = 1 � { �0

(m�+ �m)2 � � 20
� { �H

(m� + �m)2 � � 2H
(74)
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This solution method is e�ective for higher modes (m > 1). One can quickly generate a
thousand or more eigenvalues on a modern workstation. The work in developing a useful
basis for a modal computation is limited then to computing the lower eigenvalues. This
computation is discussed below.

A.2 Low-Order Eigenvalues

A.2.1 Alternate form of the characteristic equation

Newton's method is fast and dependable for the case in which m > 1; however, special care
is needed for cases in which m = 0 or m = 1. The problem is worse when the admittances
have large imaginary parts and small real parts, so we attack these cases �rst. In these
cases, pure imaginary solutions may exist for the eigenvalue kyH. Accordingly the following
de�nitions are introduced to investigate these cases:

kyH = �{� (75)

a = ��0�H (76)

b = �{�0 + �H

2
(77)

These changes of variable allow the characteristic equation to be expressed as

F (�) = a+ �2 + 2b� coth � = 0 (78)

To this point, no real change has occurred, because all variables are complex. Now consider
solutions in which the parameters a b are real variables (i.e., the real parts of the complex
parameters de�ned above). We can �nd real solutions � for these real parameters and add
the e�ects of their imaginary parts later.

A.2.2 Solutions for Real Parameters

Now take the real parts a1 b1 of the parameters a = a1+ {a2 and b = b1+ {b2. For brevity, we
use the same symbols a b with the understanding that they are restricted to real values in
this subsection. When the parameters are real, a better form of the characteristic equation
utilizes the square of the eigenvalue as

� = �2 = � (kyH)
2

(79)

F (�) = a+ � + 2b
C(�)

S(�)
(80)

C(�) � cosh � (81)

S(�) � sinh(�)

�
(82)

The value of the characteristic function at the origin and its behavior when � is large are
important for determining if the characteristic function has zeros for positive �.

F (0) = a+ 2b (83)

F (�) � �; � !1 (84)

The de�ned functions C(�) and S(�) have properties that make them useful in determining
solutions to the characteristic equation. These properties will be listed here before consid-
ering the numerical procedure for solving for the eigenvalues.
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The functions are de�ned by the series for the hyperbolic functions:

C(�) =
1X
n=0

�n

(2n)!
(85)

S(�) =
1X
n=0

�n

(2n + 1)!
(86)

The series de�nitions permit the following immediate observations:

S(�) � C(�); 0 � � <1 (87)

S0(�) � C 0(�); 0 < � <1 (88)

1 � C(�); 0 � � <1 (89)

1

2
� C 0(�); 0 � � <1 (90)

1 � S(�); 0 � � <1 (91)

1

6
� S0(�); 0 � � <1 (92)

The following formulas are useful for evaluating the derivatives of the functions:

C 0(�) =
1

2
S(�) (93)

S0(�) =
C(�)� S(�)

2�
(94)

Finally, the functions have the following asymptotic character:

S(�) � ��1=2C(�); � !1 (95)

S0(�) � 1

2
��1C(�); � !1 (96)

C 0(�) � 1

2
��1=2C(�); � !1 (97)

The �rst derivative of the characteristic function is

F 0(�) = 1 +
b

S2(�)

 
C(�)S(�) � 1

�

!
(98)

F 0(0) = 1 +
2

3
b (99)

F 0(�) � 1 + b��1=2; � !1 (100)

The derivative F 0(�) approaches unity from above or below, depending on the sign of b when
� is large. The derivative F 0(0) may be positive or negative, depending on the value of b;
F 0(0) is positive for b > �3=2, zero for b = �3=2, and negative for b < �3=2. The second
derivative of the characteristic function is

F 00(�) = � b

S3(�)

"
C(�)(S2(�) � 2) + S(�)

2�2

#
(101)

F 00(0) = � 4

45
b (102)

F 00(�) � � b
2
��3=2; � !1 (103)
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The function within brackets is positive, so that the sign of the second derivative depends
only on the sign of b. If b is negative, then the curvature is positive; if b is positive, the
curvature is negative. The limit of the function within brackets is 4=45 for � = 0, which
gives the value of the derivative at the origin.

Small solutions j�j << 1 are possible for certain combinations of the parameters a b.
These combinations are identi�ed by utilizing a two-term series for the characteristic func-
tion:

F (�) = F (0) + F 0(0)� = 0 (104)

which gives the following estimate for �2

� = �
 
a+ 2b

1 + 2
3
b

!
(105)

In order for this estimate to be consistent with the assumed smallness of �, the parameters
must be related by

� jF 0(0)j � � F (0) � + jF 0(0)j � (106)

�
����1 + 2

3
b

���� � � F (0) � +

����1 + 2

3
b

���� � (107)

In the special case for which b! �3=2, the limits above show that a! �2b. These solutions
can be positive or negative because they represent the e�ect of the parameters in moving
the solutions from the real KyH axis to the imaginary KyH axis in the neighborhood of the
origin.

A long list of cases needs to be investigated in determining whether solutions for KyH
exist near the origin or on the imaginary axis (� is positive). The cases will be organized here
by de�ning ranges of the characteristic function and its slope at the origin. These parameters
(F (0) and F 0(0)) depend on the parameters a b only.

1. If F 0(0) > +�, then the slope of the characteristic function is positive everywhere. If
F (0) > +�, then no positive solution exists; however,

(a) If jF (0)j � �, then a small solution � = O(�) exists, or else

(b) else If F (0) < ��, then a positive solution � > 0 exists, or else

2. If jF 0(0)j � �, then the slope at the origin is near zero. If F (0) > +�2, then no positive
solution exists; however,

(a) If jF (0)j � �2, then a small double solution � = O(�) exists, or else

(b) If F (0) < ��2, then a positive solution exists, or else

3. If F 0(0) < ��, then the slope at the origin is negative and the characteristic function
has a minimumfor some � > 0. Find the location of the minimum �min and evaluate the
characteristic function to get its minimum value Fmin. If Fmin > �2, then no solution
exists; however,

(a) If jFminj � �2, then a double solution exists near �min, or else

(b) If Fmin < ��2, then the solutions depend on the value of F at the origin.

i. If F (0) > +�2, then two distinct solutions � < �min and � > �min exist, or else

ii. If jF (0)j � �2, then a solution near � = 0 exists and another solution � > �min

exists, or else
iii. If F (0) < ��2, then a single solution � > �min exists.
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A.2.3 Solutions for Complex Parameters

Now that we have found all possible solutions for real parameters, the next step is to �nd
the e�ect of the imaginary parts of the parameters on these solutions. Let the parameters
a b be complex functions of a real parameter s, which varies from zero to unity (0 � s � 1).
The parameters are identical to their real parts when s = 0 and take their actual values
when s = 1. Begin with the solutions for real parts of the parameters for the case in which
s = 0 and trace these solutions to the point at which s = 1. Note that these solutions can
include e�ects of the real parts of the admittances in the parameter a. The tracing follows
a di�erential equation for the square of the eigenvalue �(s) as a function of the parameter s:

Ky(s)H =
q
��(s) (108)

a = ��0�H (109)

b = �i�0 + �H

2
(110)

a(s) = <[a] + i=[a]s = a1 + ia2s (111)

b(s) = <[b] + i=[b]s = b1 + ib2s (112)

Now, �(s), a(s), and b(s) are complex functions of the real variable s. The characteristic
function depends on s and is complex but is otherwise unchanged from the one de�ned for
the real variables:

F (�; s) = a(s) + � + 2b(s)
C(�)

S(�)
(113)

@F (�; s)

@�
= 1 + b(s)

 
C(�)S(�) � 1

�S2(�)

!
(114)

@2F (�; s)

@�2
= � b(s)

S3(�)

"
C(�)(S2(�) � 2) + S(�)

2�2

#
(115)

@F (�; s)

@s
= a0(s) + 2b0(s)

C(�)

S(�)
(116)

The solutions for which s = 0 are initial conditions for a �rst-order di�erential equation,
which is used to �nd �(s):

d� = �
�
@F

@s

�
�
@F

@�

�ds (117)

This equation is valid as long as the initial condition is not a double eigenvalue. When the
initial condition is a double eigenvalue �m, the partial derivative in the denominator is

@F

@�
=
@2F (�; s)

@�2
(� � �m) (118)

The di�erential equation for � is then singular, but a di�erential equation for the square of
the displacements of the eigenvalues from the double eigenvalue is not singular.

d(� � �m)2 = �2
�
@F

@s

�
�
@2F

@�2

�ds (119)
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Given an initial step �s, the two eigenvalues near the double eigenvalue are

� = �m �

vuuut�2
�
@F

@s

�
�
@2F

@�2

��s (120)

The di�erential equation for the eigenvalue is then used to trace each of these to the �nal
value for s = 1.
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B Acoustic Modes

The velocity and pressure due to a single acoustic mode are given by

k

�
v̂

p̂

�
=

�
�c 0

0 ���c2

� �
kye

{kyy �kye�{kyy
ke{kyy ke�{kyy

� �
a

b

�
(121)

Admittance boundary conditions on the top and bottom walls are

b 1 ��t c
�
v̂

p̂

�
= 0 (122)

b 1 +�b c
�
v̂

p̂

�
= 0 (123)

We can combine these equations ot obtain a matrix equation for the modal constants:

�
(kyh� kh�t)e+{kyh=2 �(kyh+ kh�t)e

�{kyh=2

(kyh+ kh�b)e
�{kyh=2 �(kyh� kh�b)e+{kyh=2

� �
a

b

�
= 0 (124)

B.1 Ratio of Coe�cients

Either of the above equations can be used to solve for the ratio a=b or b=a. The �rst gives

 
b

a

!
=

(kyh� kh�t)
(kyh+ kh�t)

e+{kyh (125)

and the second gives �
a

b

�
=

(kyh � kh�b)
(kyh+ kh�b)

e+{kyh (126)

The product of these results is unity, which is the eigenvalue equation treated in appendix A.
Here, however, we want only the ratio, with the assumption that the eigenvalue solution is
complete. Because some error may occur in the eigenvalue calculation, we take the arithmetic
average of the two solutions.  

b

a

!
=

1

2

" 
b

a

!
+
�
a

b

��1#
(127)

B.2 Normalization

Given the ratio of the coe�cients, the magnitude of one coe�cient (e.g. ,a) can now be
chosen such that the average potential energy in the mode is unity. With the two-sided
transform, the average potential energy is the average of the magnitude of the pressure.
Consequently, we set

1

H

Z
H=2

�H=2
jp̂j2 dy = 1 (128)

This condition determines the magnitude of a:

jaj�2 = b 1 (b=a)� c
2
4
D
e{kyy; e{kyy

E D
e{kyy; e�{kyy

E
D
e�{kyy; e{kyy

E D
e�{kyy; e�{kyy

E
3
5� 1

(b=a)

�
(129)
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where the inner product of two variables is de�ned as

hu; vi = 1

H

Z
H=2

�H=2
u�v dy = 1 (130)

The inner normalization condition determines the magnitude of a. A choice is still available
for the phase. The convention will be used that the phase of the pressure is zero at y = 0:

arg p̂(0) = 0! arg(a+ b) = 0 (131)

This choice is achieved by setting

arg a = � arg [1 + (b=a)] = 0 (132)

B.3 Inner Products

The inner products needed are

D
e{kuy; e{kvy

E
=
D
1; ei(kv�k

�

u)y
E
=

sin
�
(kv�k�u)H

2

�
�
(kv�k�u)H

2

� = sinc

 
(kv � k�u)H

2

!
(133)

The sinc function is de�ned with a limiting case

sinc z =

(
sin z
z

if jzj > 0
1� 1

6
z2 if jzj ! 0

(134)
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C Series Solutions of the Helmholtz Equation

C.1 Inner Products

The inner product of two functions is de�ned as

hu; vi = 1

D
Z
D
u�v dD (135)

where D indicates the domain of the functions. In one dimension, jDj is the length of the
interval; and, in two dimensions, it is the area. Because the �rst variable is conjugated, the
average of a product over space is

uv = hu�; vi (136)

The average of the magnitude squared of a complex function is

juj2 = hu; ui (137)

and the average of the square of a function is

u2 = hu�; ui (138)

The average of a squared function is complex, but the average of the magnitude squared is
real.

The inner product of two modes is de�ned as

h�mn(y; z); �m0n0(y; z)i = 1

HW

Z +W=2

�W=2

Z +H=2

�H=2
��
mn
(y; z)�m0n0(y; z) dy dz (139)

where the domain isHW . Because the two-dimensionalmodes are products of one-dimensional
modes,

h�mn; �m0n0i = h�m; �0mi h n;  0ni (140)

If we assume discrete sets of eigenvalues kym and kzn, then the corresponding modal
functions �m(y) and  n(z) are not orthogonal with this inner product; however, the complex
conjugates of the modes form a reciprocal basis. Inner products of the conjugate modes and
the modes are then proportional to Kronecker delta functions:

h��
m
(y); �m0(y)i = �2

m
�mm0 (141)

h �
n
(z);  n0(z)i =  2

n
�nn0 (142)

h��
mn

(y; z); �m0n0(y; z)i = �2
m
 2
n
�mm0�nn0 (143)

where the overbar symbol means the average over the spatial dimensions of the function.

C.2 Point Source in the Interior

The three-dimensional wave equation with a point source of volumetric strength S is

r2p̂s + k2p̂s = !��S�(x� x0)�(y � y0)�(z � z0) (144)

The pressure p̂s can be expressed in a modal series, as in equation (11) in terms of the basis
functions �mn(y; z), which satisfy the wall boundary conditions:

p̂s(x; y; z) = ���c2
1X

m;n=0

Gmn�mn(y; z)e
{kxmnjx�x0j (145)
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The combination of equations (144) and (145) gives

���c2
1X

m;n=0

Gmn�mn(y; z)

 
@2

@x2
+ k2

xmn

!
e{kxmnjx�x0j

= !��S�(x� x0)�(y � y0)�(z � z0); x 6= x0 (146)

If we utilize the reciprocal basis function to form inner products and integrate over the
�(x�x0) function, we obtain an equation for the coe�cients Gmn. This leads to the condition

Gmn = � {
2
Zmn

�
S

HW �c

�"
�m(y0)

�2
m

# "
 n(z0)

 2
n

#
(147)

C.3 Point Source in the Left Boundary

Let the left boundary be a hard wall with a point source of strength Sw at a point (y0; z0).
Then, the admittance in the general boundary equation (2) is zero, and

ûs = Sw�(y � y0)�(z � z0) (148)

The velocity is expanded in a modal series as

ûs(x; y; z) = �c
1X

m;n=0

U s+
mn
�mn(y; z)e

{kxmnx (149)

By evaluating this expression at x = 0,we obtain the coe�cients of the expansion

U s+
mn

=

�
Sw

HW �c

�"
�m(y0)

�2
m

# "
 n(z0)

 2
n

#
(150)

The pressure coe�cients are given by the modal impedances

Ps+
mn

= Zmn

�
Sw

HW �c

�"
�m(y0)

�2
m

# "
 n(z0)

 2
n

#
(151)

These coe�cients di�er from those for a source in the interior only by the factor �{=2. Note
that a volumetric source in the wall is twice as e�ective as a volumetric source in the interior.

C.4 Transmitted Power and Intensities for a Point Source

The acoustic intensity at a point (x; y; z) is given by

Ix(x; y; z) = 2<[p̂û�] (152)

where the superscript asterisk denotes the complex conjugate and < is the real part. The
power transmitted in the axial direction is given by
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The inner product hû; p̂i is
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In the case of hard walls, the modes are orthogonal, and the inner products of modes become
Kronecker delta functions. The power formula then simpli�es to a double sum:

hû; p̂i = ���c3
1X

m;n=0

PmnU�mn
e�2=(kxmn)jx�x0j (155)

37


